
How to Detect and Mitigate Bias in Machine Learning Models

Fairness in AI Systems

www.consileon.ai

Autor: Ramiz Abusabbah

http://www.consileon.ai

www.consileon.ai2

Information Deficits and Fairness
Some say our choices shape our destiny. And we choose all the time: hardly a few seconds go
by without us making some decision. You are reading this article because you have decided to
do so and keep deciding to go on. Some decisions entail severe risks or grave consequences. In
predictive policing, for example, decisions are made on how to deal with convicts considered
prone to recidivism. Banks classify loan applicants as either good or bad risks. Employers need to
decide which candidate to hire.

The higher the stakes, the more difficult the decision, especially when predictive information is
sparse. And the harder information is to come by, the more we tend to rely on prejudice. That is
why we tend to favour members of a group we identify with, or traits we seem to share. When
such bias leads your staff into making discriminatory decisions, however, your organization may
run into ethical or legal issues. Good business practice hence involves decision-making that is
not only economically sound but also fair. Fairness, to that end, is the absence of any degree
of prejudice or favouritism towards any individual or a group based on any trait or other inhe-
rent, acquired or merely supposed quality. So, when it comes to making high-stakes decisions,
wouldn‘t it be better to leave it to a computer?

AI-Driven Decision-Making
Across industries, more and more organizations are looking to artificial intelligence (AI) to help them
overcome human limitations. Unlike people, machines get neither bored nor tired. Moreover, they
can take far more dimensions and factors into account than humans. Supervised machine learning
(ML) algorithms are hence increasingly used for making high-stakes, multifactor decisions. Super-
vised ML models predict the outcome of a new instance by analysing training data that comprises
many historical instances and their outcomes. In other words, they generalize from parallels and
patterns they dig up in the training set to produce a well-founded guess on how the new instance
is likely to turn out.

However, what seems to be the greatest virtue of such models can be a drawback too: they do their
maths stoically, with notorious indifference to any bias that the training data may or may not con-
tain. If your training data reflects social or ideological prejudice, your ML system will reproduce that
bias, thus possibly yielding undesirable or even illegal results such as discrimination against protec-
ted demographic groups. Employers, for example, are legally required to ignore an applicant‘s gender
in their hiring decision even if that criterion has proven statistically relevant.

In addition to reproducing ubiquitous prejudice, there is the risk of generating bias by over- or un-
dersampling demographic groups. This is referred to as sampling bias. It creeps in whenever the
composition of the training dataset differs from real-world distribution.

Now that we know how ML models become biased, we need to answer three more questions before
we start developing a fair model: how do we define fairness, how do we measure it and when would
we be justified in claiming that a model is fair?

Fairness Defined
To make fair, non-discriminatory decisions we need to define the notion of fairness. Philoso-
phers and psychologists have tried to do that long before computer science. But they are still
far from unanimous about it. After finding twenty-one definitions of fairness, we concluded
our literature search. In all that variety, however, we found two general approaches to the idea:
individual versus group fairness.

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 3

Group fairness versus individual fairness

 Treat similar cases similarly

 Use distance metric
 as similarity measure

 Ignore group membership
 in decision-making

 Split population in two groups
 (privileged, unprivileged) based
 on protected attributes such
 as age, gender or disability

 Apply a statistical measure that
 results in similar outcomes across
 groups

individual
fairness

group
fairness

Individual fairness means treating similar individuals similarly regardless of their relation with
any group. Similarity, to that end, is measured by distance metrics such as Euclidean or Manhattan
distance. Individuals who are close to one another as defined by those metrics must have similar
traits. Group fairness, by contrast, refers to treating all demographic groups equally. To detect ille-
gal or undesirable discrimination, the population is split into two subsets based on one or multip-
le sensitive attributes. One group possesses values for these attributes which afford its members
preferential treatment, and the other lacks those attribute values. The first group is referred to as
privileged while the second as unprivileged or protected depending on the context. The sensitive
attributes are also called protected attributes because it is illegal or undesirable to discriminate
based on their values. Common metrics and formulae for quantifying group fairness in machine
learning models are listed below.

Another inequality metric is the Theil index, which quantifies the divergence of the current distri-
bution of resources within and among demographic groups.

Statistical parity difference

Disparate impact

Equal opportunity difference

Average odds difference

True negative rate parity

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

www.consileon.ai4

data model performance

statistical parity difference

disparate impact

equal
opportunity
difference

true
negative

rate parity

average odds difference

Theil index

Manhattan distance

Euclidean distance

gr
ou

p-
fa

irn
es

s
m

et
ric

s
in

di
vi

du
al

-
fa

irn
es

s m
et

ric
s

When to Use Fairness Metrics
The above metrics help us find bias either when we review our training data before building the
ML model or when we evaluate the model’s performance after completing the training. In the
first case, bias is identified with respect to the real outcome values in the training dataset. In the
second case, we assess the legal or ethical acceptability of the trained model’s predictions. The
following chart shows you when to apply which metric.

The choice of the metric depends on the context in which fairness is to be checked. Suppose we are
evaluating the bias in the model‘s predictions. While the Theil index shows us whether resource
distribution among demographic groups and their members is even, the statistical parity diffe-
rence reveals how likely each group is to achieve a favourable outcome regardless of whether or to
what extent group members qualify for that achievement. In other words, individuals pertaining
to the same group are considered equally eligible to attain a positive outcome. This view of fair-
ness is called we’re all equal (WAE).

When we need to factor in that only qualified group members are likely to reach a favourable
outcome, we can measure the true positive rate parity, also referred to as equal opportunity diffe-
rence. Another concept is what you see is what you get, better known by its acronym WYSIWYG.
It helps us balance the rate of positive outcomes of qualified to unqualified individuals across
groups. In such cases, the average odds difference allows us to offset qualified individuals from
one group with unqualified individuals from another. For guidance on choosing a fairness metric
that fits your context, see the following decision tree.

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 5

preprocessing inprocessing postprocessing

reweighing prejudice remover reject-option calssification

optimized preprocessing meta-fair classifier
equalized odds
postprocessing

disparate impact remover

Whom to treat similarly: everyone, similar individuals or groups?

Measure fairness based on training data
or on model performance?

difference or ratio?

statistical parity difference disparate impact

average odds difference punitive or supportive context

true positive rate parity
(equal opportunity difference)true negative rate parity

opposing worldviews Manhattan distance Euclidean distance

individual
fairness metric

Theil
index

groups similar individuals everyone

data

difference ratio

punitive supportive

WYSIWYG other

model
WAE

Bias Mitigation Algorithms

Bias mitigation algorithms can be applied in any phase of the ML workflow:

 ■ Preprocessing algorithms. In our context, preprocessing means taking place before
 model training. Preprocessing algorithms transform the original data to remove
 implicit discrimination.

 ■ Inprocessing algorithms are applied while training the model. They change or modify
 state-of-the-art learning algorithms in order to remove discrimination. This is done
 by imposing changes to the objective function or incorporating constraints.

 ■ Postprocessing algorithms are applied after the training. They revise the labels assigned
 to the data by the trained model. These techniques are applied when the model can
 only be seen as a black box without any ability to modify the training data or the
 learning algorithm.

Literature abounds with mitigation algorithms. The following table subsumes popular
specimens under the three classes introduced above.

www.consileon.ai6

In the demo presented later, the reweighing algorithm is applied to mitigate bias in the dataset.
But before we come to that, let us explain the idea behind that algorithm and see how it deals
with biased data. The following section includes technical content. This can be skipped as desi-
red by the reader.

Reweighing
The reweighing algorithm enables a model to learn a classifier that excludes protected attributes
from determining its predictions. It balances biased training data by assigning weights to samples
without changing label or feature values. This is achieved by neutralizing the label’s statistical
dependence on the protected attribute. The balanced or transformed dataset is generated by sam-
pling the original set and adjusting the weights of the samples. After that, the model learns the
classifier from the balanced/transformed data.

Reweighing is based on, but differs slightly from, the idea of under- and oversampling. While
undersampling balances class distribution by assigning weights of zero to problematic samples,
thus effectively removing them from the dataset, reweighing keeps all samples, assigning weights
above zero in a way that equalizes the distribution of labels across groups. Unlike oversampling,
which assigns positive integer weights only, the reweighing algorithm uses real numbers, which
qualifies it as an instance of cost-sensitive learning. The weights enter into the learning algorithm.
A sample‘s weight quantifies the extent to which the algorithm will be “punished” when it fails to
predict that sample correctly. Errors in the prediction of higher-weighted samples are thus more
expensive than errors on samples with lower weights.

To understand how the algorithm calculates weights for each sample,
let us assume the following parameters:

 ■ a binary protected attribute such as gender (G) = {f, m}, where f is the unprivileged group

 ■ a label such as class (C) = {+,-}, where + is the favourable outcome

 ■ N: total number of training samples

 ■ Nconditon: number of training samples that meet the specified condition

If the training set is unbiased, the class label should be statistically independent of the protected
attribute. The probability that an individual is female (f) and labelled as positive (+) should be:

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

However, the actual probability we observe is:

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 7

If the actual probability turns out lower than expected, women are less likely to obtain the positive
outcome. To counter that disadvantage, we assign the following weight to female individuals with
positive labels:

By analogy, we divide expected by actual probability to assign weights to female individuals with
negative labels as well as to male individuals with either positive or negative labels.

Demo: Bias Identification and Mitigation
In this section, we demonstrate how to mitigate bias in machine learning models. We walk you
through the process step by step and provide the corresponding Python code.

Based on the Strategeion Résumé Skills dataset, we examine a hiring process for bias or discri-
mination against a protected demographic group. Strategeion Résumé Skills is a synthetic da-
taset of skills extracted from fictional CVs published on the web for AI specialists to evaluate
the fairness of decisions made by ML models. It comprises 1968 records, each representing one
fictional job applicant. Each record features 222 binary attributes that serve as input for training
the model. They fall into two categories:

 ■ 218 attributes refer to skills. They indicate whether or not a CV includes a skill in
 question. The skills were drawn from popular entries in LinkedIn such as automotive,
 branding or data analysis.

 ■ The dataset also contains four protected demographic attributes which we will be
 using to detect bias:

 veteran: 1 if the applicant is a veteran, else 0
 female: 1 if the applicant is a woman, else 0
 URM: 1 if the applicant belongs to an underrepresented minority, else 0
 disability: 1 if the applicant has a disability, else 0

Records, too, are marked with a binary label which serves as an output target in the supervised
training of our ML model. The label is stored as an attribute named interview, with 1 indicating
that the applicant has been invited, else 0.

In the demo below, we examine a hiring process for bias based on the female protected attri-
bute. To that end, we split the applicants’ data in two subsets, a privileged one comprising men
(attribute value female = 0), and a protected group of women (attribute value female = 1). To
amplify the bias reflected in the dataset, we manipulate the label values to the effect that male
candidates receive more interview requests.

Before we scan the hiring data for discrimination, we need to clarify which outcome we would
consider fair. So for the purpose of our demo, let’s define that:

The model is ideally fair only if the same percentage of male and female job applicants
receives an interview request.

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

www.consileon.ai8

Group fairness metrics such as statistical parity difference or disparate impact would meet that
definition. Both quantify the discrepancy in favourable outcomes between protected and privi-
leged demographic groups.

We start by splitting the original hiring data into a training and a test set. By running the reweig-
hing algorithm on a copy of the training set, we generate a third, unbiased dataset. For compa-
rison, we develop two versions of the ML model, both based on logistic regression. One version
is trained on the original biased dataset to serve as benchmark for the other, which learns from
the bias-free dataset generated by the reweighing algorithm. After training, we compare the
performance of the two models regarding discrimination. This is done by computing and com-
paring the fairness metrics with respect to the predictions of both models. The chart below
illustrates the entire bias detection and mitigation process.

biased hiring
dataset

train the ML model:
logistic regression

preporcessing mitigation
algorithm: Reweighing

train-test split

prediciton

prediciton

train the ML model:
logistic regression

initial training
dataset test

dataset

initial training
dataset

transformed
training set

model parameters

model parameters

compare results

 Compute fairness metrics on data

 Compute fairness metrics on model performance

Bias detection and mitigation process in our fairness demo

In the following steps, we explain how we built our demo. Before starting our analysis, we need to
import the tools (step 1) and dependencies (required software components, step 2) we will be using.

Step 1: import and install AIF360

In this demo, we use the AI Fairness 360 toolkit, an open source library developed by researchers
at IBM. AIF360 provides a comprehensive set of metrics and algorithms to test for and mitigate
bias. For the demo to succeed, please import and install the toolkit within the environment you
are working in.

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 9

Step 2: import dependencies

As in any Python program, we need to import the dependencies we will be working with such as
the NumPy library for handling arrays and mathematical operations as well as the pandas library
for data analysis and manipulation. From scikit-learn, we import the logistic regression algorithm
for training a classifier on our dataset. From AIF360, we import various metrics to check for bias,
and classes relevant to our bias mitigation algorithm.

import NumPy as np

import pandas as pd

np.random.seed(0)

#Import logistic regression to develop machine learning model.

from sklearn.linear_model import LogisticRegression

#Import BinaryLabelDatasetMetric class from toolkit. It includes fairness

metrics needed to detect bias.

from aif360.metrics import BinaryLabelDatasetMetric

#From the toolkit, import reweighing mitigation algorithm.

from aif360.algorithms.preprocessing import reweighing

#Import Markdown for textual explanation of steps.

from IPython.display import Markdown, display

Step 3: import and read original data

After importing the libraries, we load our original hiring dataset. Like AIF360, the dataset must
be available in the code’s runtime environment. In our case, the dataset is a CSV (comma sepa-
rated values) file. To read the file into a DataFrame and access its content, we insert its path in
pandas’ read_csv built in function.

df=pd.read_csv(„BiasedDatasetHiring.csv“, sep=“;“)

pip install ‚aif360[all]' –user

pip install ‚aif360[LFR,OptimPreproc]' #Some algorithms require further
dependencies.

www.consileon.ai10

Step 4: exploratory data analysis

Before analysing any dataset for real-world insight, it pays to survey its structure and content, and
gain some meta-information so we know what to look for later on. This preparatory step is called
data exploration or exploratory data analysis. To that end, we can use the following functions.

 ■ info(): pandas function that summarizes DataFrames

 ■ isnull(): function that helps us detect missing values

 ■ head(): pandas function that returns the first five observations from the data

#Explore data.

display(Markdown('###Show dataset properties'))

print(df.info())

display(Markdown('###Are there any values missing?'))

print(df.isnull().sum())

display(Markdown('###Show first five records'))

df.head()

Output

Show dataset properties

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1986 entries, 0 to 1985

columns: 224 entries, column1 to disability

dtypes: int64(224)

memory usage: 3.4 MB

none

Are there any values missing?

column1 0

interview 0

Adobe Illustrator 0

Adobe Photoshop 0

agile methods 0

 ..

writing 0

veteran 0

female 0

URM 0

disability 0

length: 224, dtype: int64

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 11

Step 5: preprocessing

Our data exploration has shown that the first column of the set merely serves to number the sam-
ples. Since it does not contain any factual information and is irrelevant to the model’s training, we
eliminate it with the del command. As all attributes are binary {0,1}, preprocessing comprises just
this step.

del df["column1"]

Step 6: convert dataset into a standard format as required by AIF360 toolkit

To apply the methods and metrics from AIF360, we must convert our data into a compliant format.
We initialize the dataset within a Python class called RecruitingDataset, which inherits all attribu-
tes and functions of superior classes from the toolkit such as StandardDataset, BinaryLabelData-
set, StructuredDataset, Dataset. To initialize the set, we need to feed the __init__ method with
the desired specifications.

 ■ label_name: name of the dataset’s label column. In the original hiring dataset, the interview
 attribute indicates whether or not a job applicant has been invited. This is going to be our label
 attribute.

 ■ favourable_classes: label values considered favourable. Applicants labelled with
 interview = 1 have received an interview request.

 ■ protected_attribute_names: a list of the protected attribute names in the dataset. In
 our case, they comprise four demographic categories: veteran, female, URM, disability.

 ■ privileged_classes: a list of values which are considered privileged with respect
 to the protected attributes. Privileged classes refer to men (female = 0) who are neither
 veterans (veteran = 0) nor members of an underrepresented minority (URM = 0) nor
 disabled (disability = 0).

 ■ instance_weights_name: name of the dataset’s instance weight column. Since our hiring
 dataset does not include any instance weights, we set this argument to none.

 ■ categorical_features: a list of the names of categorical features in the dataset.
 AIF360 provides a method that uses one-hot encoding to transform categorical into
 numerical features. Since categorical features are inexistent in the hiring dataset,
 we leave that field blank.

 ■ features_to_keep: names of columns to keep. All others are dropped except those in
 protected_attribute_names, categorical_features, label_name or
 instance_weights_name. As we will be using all skill attributes from the original dataset to
 check the outcomes of our model, we leave this argument blank.

 ■ features_to_drop: names of columns to drop. This argument overrides features_to
 _keep.

 ■ na_values: a list of strings to treat as missing values. In our demo, we leave this optional
 argument blank.

www.consileon.ai12

 ■ custom_preprocessing: additional preprocessing specified by the user. Not needed
 for our demo.

 ■ metadata: an argument for appending metadata.

To call the superclasses of RecruitingDataset, we use super().

from aif360.datasets import StandardDataset

import os

class RecruitingDataset(StandardDataset):

def __init__(self, label_name='interview', favourable_classes=[1],\

 protected_attribute_names=['veteran','female','URM','disability'],\

 privileged_classes=[[0],[0],[0],[0]],\

 instance_weights_name=none,\

 categorical_features=[],\

 features_to_keep=[], features_to_drop=[],\

 na_values=[], custom_preprocessing=none,\

 metadata=none):

 super(RecruitingDataset, self).__init__(df=df, label_name=label_name,

 favourable_classes=favourable_classes,

 protected_attribute_names=protected_attribute_names,

 privileged_classes=privileged_classes,

 instance_weights_name=instance_weights_name,

 categorical_features=categorical_features,

 features_to_keep=features_to_keep,

 features_to_drop=features_to_drop, na_values=na_values,

 custom_preprocessing=custom_preprocessing, metadata=metadata)

Step 7: specify dataset settings and perform a train-test-split

In the demo, we split the dataset into two groups with respect to the protected attribute female
and then check for bias by comparing the outcomes of both groups in the training dataset as well
as later in the predictions. To do so, we first initiate an instance of class RecruitingDataset. All pro-
tected attributes except for female are dropped as they are not needed in the observed context.

After the initialization of the dataset, a training-test split is performed. We shuffle the original
samples to assign them randomly to the training and test sets, then split them at a 70:30 ratio,
using the larger share for training and the rest for testing the model’s accuracy. Finally, we set two
variables for the privileged (0) and unprivileged (1) values of the female attribute. These are key
inputs for detecting and mitigating bias in step 8 and step 9.

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 13

#dataset settings

dataset_orig = RecruitingDataset (protected_attribute_names=['female'],
privileged_classes=[[0]],\

 features_to_drop=['veteran','URM','disability'])

#train–test split

dataset_orig_train, dataset_orig_test = dataset_orig.split([0.7], shuffle=true)

#privileged & unprivileged groups

privileged_groups = [{'female': 0}]

unprivileged_groups = [{'female': 1}]

If we were to check a model for bias against a combination of protected attributes such as
protected_attribute_names=['female','disability'], we would split the dataset
into a privileged and an unprivileged group based on the privileged_classes argument. In-
dividuals privileged on both protected attributes would form the privileged group, while all others
would belong to the protected group.

Step 8: compute fairness metrics on original training data

After defining female as protected attribute with a privileged and an unprivileged value, we use
AIF360 to spot bias in the hiring data by computing the statistical parity difference. We arrive at
this metric by subtracting the percentage of favourable results of the privileged group from that
of its unprivileged complement. A negative difference indicates that the unprivileged group is less
likely to achieve a favourable outcome than the complement. To double-check, we compute the
disparate impact as well. This metric expresses the same information not as a difference howe-
ver, but as a ratio. A value below one indicates that the unprivileged group is at a disadvantage.
To compute the two metrics, we apply the statistical_parity_difference() and dis-
parate_impact() methods from the BinaryLabelDatasetMetric class. The code below
triggers those calculations and displays the output, showing a statistical parity difference of
–0.243882 and a disparate impact of 0.391562.

metric_orig_train = BinaryLabelDatasetMetric(dataset_orig_train, unprivileged_
groups=unprivileged_groups,\

 privileged_groups=privileged_groups)

print("Difference in mean outcomes (statistical parity difference) between
unprivileged and\

privileged groups = %f" % metric_orig_train.statistical_parity_difference())

print("Disparate impact of unprivileged to privileged groups = %f" % metric_
orig_train.disparate_impact())

Output

Difference in mean outcomes (statistical parity difference) between unprivileged
and privileged groups = −0.243882

Disparate impact of unprivileged to privileged groups = 0.391562

www.consileon.ai14

A statistical parity difference of -24% indicates that the probability of getting invited to an inter-
view given a female applicant is by 24% less than that given a male applicant:

By disparate impact, women are only 39 percent as likely to be invited to an interview as men,
which is a strong indicator of recruiters discriminating against female applicants.

In the next step, we apply a mitigation algorithm to neutralize bias in the training data.

Step 9: apply bias mitigation algorithm, compute fairness metrics on transformed data

In step 8 we saw that our privileged group is more than twice as likely to obtain a positive out-
come. To minimize that bias, we apply a mitigation algorithm to the original training data, expec-
ting that training a model on balanced data will balance the model’s performance.
AIF360 offers a choice of preprocessing mitigation algorithms. We opt for the reweighing algo-
rithm from the pertinent class in the aif360.algorithms.preprocessing package. The
algorithm transforms the dataset for a more even distribution of positive outcomes among pri-
vileged and unprivileged groups as defined by a protected attribute. The transformation consists
in resampling the dataset by adjusting the samples’ weights such that the label becomes statisti-
cally independent of the protected attribute without changing attribute or label values. To gene-
rate a training set based on that transformation, we call the fit_transform() method. The new
dataset is named dataset_transf_train.

We compute the same two fairness metrics (statistical parity difference, disparate impact) on the
transformed dataset. The statistical parity difference now is zero, the disparate impact has risen
to 100 percent. Both metrics indicate that the new dataset’s weighting neutralizes the statistical
effect of the protected attribute on the outcome.

RW = reweighing(unprivileged_groups=unprivileged_groups,

 privileged_groups=privileged_groups)

dataset_transf_train = RW.fit_transform(dataset_orig_train)

metric_transf_train = BinaryLabelDatasetMetric(dataset_transf_train,

unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)

print("Difference in mean outcomes (statistical parity difference) between

unprivileged \

and privileged groups = %f" % metric_transf_train.statistical_parity_diffe-
rence())

print("Disparate impact of unprivileged to privileged groups = %f" % metric_
transf_train.disparate_impact())

Output

Difference in mean outcomes (statistical parity difference) between unprivileged
and privileged groups = 0.000000

Disparate impact of unprivileged to privileged groups = 1.000000

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

formeln fairness

ramiz.abusabbah

May 2021

1 Formeln

statistical parity difference = favourable outcome rateunprivileged−favourable outcome rateprivileged

disparate impact =
favourable outcome rateunprivileged
favourable outcome rateprivileged

equal opportunity difference = true positive rateunprivileged−true positive rateprivileged

average odds difference

=
(true positive rate+false positive rate)unprivileged − (true positive rate+false positive rate)privileged

2

true negative rate parity = true negative rateunprivileged−true negative rateprivileged

Prexp(G = f ∧ C = +) = Pr(G = f)× Pr(C = +) =
NG=f

N
× NC=+

N

Pract(G = f ∧ C = +) =
NG=f∧C=+

N

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

W (G = f ∧ C = +) =
Prexp(G = f ∧ C = +)

Pract(G = f ∧ C = +)

Pr(interview = 1|female = 1) = Pr(interview = 1|female = 0)− 24%

Pr(interview = 1|female = 1) = 39%× Pr(interview = 1|female = 0)

1

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 15

In steps 10 and 11, we are going to train two versions of our ML model. The first version will be
learning from the original hiring dataset, the second from the transformed training set. The model
is a logistic regression imported from sklearn.linear_model. To train it, we use the fit()
method. After the training, we have both models calculate their predictions, and measure their
accuracy. In steps 12 and 13, we compute the fairness metrics based on those predictions. Step 14
recaps the results.

Step 10: train a classifier on the original training dataset

The code below splits the feature vectors from the label vector both in the training and in the test
dataset. After that, it trains a logistic regression on the original hiring data.

x_train=dataset_orig_train.features #input vectors of training instances

y_train=dataset_orig_train.labels.reshape(-1) #real output of training instances

x_test=dataset_orig_test.features #input vectors of test instances

y_test=dataset_orig_test.labels.reshape(-1) #real output of test instances

#Train a logistic regression model based on original hiring data.

lr=LogisticRegression(solver='lbfgs')

lr.fit(x_train,y_train,sample_weight=dataset_orig_train.instance_weights)

'''

NOTE: All samples of the original dataset (dataset_orig_train) have the same
instance weight equalling 1. Entering the (sample_weight) parameter into the fit
method is optional.

'''

LogisticRegression(C=1.0, class_weight=none, dual=false, fit_intercept=true,

 intercept_scaling=1, l1_ratio=none, max_iter=100,

 multi_class='warn', n_jobs=none, penalty='l2',

 random_state=none, solver='lbfgs', tol=0.0001, verbose=0,

 warm_start=false)

#Compute the model's predictions by feeding it with test instances.

predictions=lr.predict(x_test)

#Compute the model's accuracy by comparing predictions with real output of test
instances.

accuracy=np.mean(predictions==y_test)

#Print the value of the accuracy measure.

accuracy

Output

0.8221476510067114

www.consileon.ai16

Step 11: train a classifier on the transformed training dataset

By analogy, we train the second version of our logistic regression model. This version learns its
parameters from the transformed training dataset.

x_train_tr=dataset_transf_train.features

y_train_tr=dataset_transf_train.labels.reshape(-1)

'''

Train a logistic regression model on unbiased data by feeding the fit method with
the instance weights of the transformed training set.

'''

lr_tr=LogisticRegression(solver='lbfgs')

lr_tr.fit(x_train_tr,y_train_tr,sample_weight=dataset_transf_train.instance_
weights)

predictions_tr=lr_tr.predict(x_test) #Compute predictions of model trained on
unbiased data.

accuracy_tr=np.mean(predictions_tr==y_test) #Compute accuracy of model trained
on unbiased data.

#Print the value of the accuracy measure.

accuracy_tr

Output

0.8238255033557047

Step 12: compute fairness metrics on the performance of the model trained via original
training set

Now, we assess the discrimination implicit in the prediction of the model trained on the original
data. To compute the fairness metrics, we distinguish the prediction on the protected group (wo-
men) from that of the complement (men). The SPD is computed by subtracting the rate of favou-
rable outcomes of the privileged group from that of the protected group. The disparate impact is
computed as the ratio of those two percentages.

prediction_female=[]

prediction_male=[]

for i,j in zip((x_test[:,-1]==1.0).astype(int),predictions):

 if i ==1:

 prediction_female.append(j)

 else:

 prediction_male.append(j)

SP_female=np.mean(prediction_female)

SP_male=np.mean(prediction_male)

print("Rate of favourable outcomes for group:female = %f" %SP_female)

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 17

print("Rate of favourable outcomes for group:male = %f" %SP_male)

print("Statistical parity difference = %f" %(SP_female-SP_male))

print("Disparate impact of unprivileged to privileged groups = %f" %(SP_female/
SP_male))

Output

Rate of favourable outcomes for group:female = 0.120521

Rate of favourable outcomes for group:male = 0.384083

Statistical parity difference = -0.263562

Disparate impact of unprivileged to privileged groups = 0.313789

Step 13: compute fairness metrics on the performance of the model trained
via transformed training set

By analogy with step 12, we compute the fairness metrics of the prediction made by the model
trained on balanced data.

predictions_tr_female=[]

predictions_tr_male=[]

for i,j in zip((x_test[:,-1]==1.0).astype(int),predictions_tr):

 if i ==1:

 prediction_tr_female.append(j)

 else:

 prediction_tr_male.append(j)

SP_female_tr=np.mean(prediction_tr_female)

SP_male_tr=np.mean(prediction_tr_male)

print("Rate of favourable outcomes for group:female = %f" %SP_female_tr)

print("Rate of favourable outcomes for group:male = %f" %SP_male_tr)

print("Statistical parity difference = %f" %(SP_female_tr-SP_male_tr))

print("Disparate impact of unprivileged to privileged groups = %f" %(SP_fema-
le_tr/SP_male_tr))

Output

Rate of favourable outcomes for group:female = 0.198697Rate of favourable
outcomes for group:male = 0.339100

Statistical parity difference = -0.140403

Disparate impact of unprivileged to privileged groups = 0.585954

www.consileon.ai18

Step 14: comparison of fairness metrics before and after bias mitigation in the data

Finally, we compare the results yielded by our two models. The first model’s rate of favourable out-
comes is 26 percent lower for the protected group than for the complement. After mitigating bias,
the parity difference of the model trained on the balanced data falls to 14 percent. On disparate
impact, results were as follows. When we trained the model on biased data, the rate of favourable
outcomes for women equalled less than a third of that for men. After mitigating bias and training
the model on balanced data, the ratio has almost doubled. Now, the former rate levels at almost
two thirds of the latter.

result=pd.DataFrame([[SP_female,SP_female_tr],[SP_male,SP_
male_tr],[SP_female-SP_male,SP_female_tr-SP_male_tr],\

 [SP_female/SP_male,SP_female_tr/SP_male_tr]],index=
 ['rate of favourable outcomes: female','rate of favourable
 outcomes: male',\

 'statistical parity difference','disparate impact'],\

 columns=['before mitigation','after mitigation'])

result

Output

Before bias mitigation After bias mitigation

rate of favorable out-
comes-Female 0.120521 0.198697

rate of favorable outcomes-Male 0.384083 0.339100

Statistical Parity Difference -0.263562 -0.140403

Disparate Impact 0.313789 0.585954

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 19

Conclusion
Across industries, businesses are increasingly relying on machine learning and other artificial intelli-
gence models to overcome human limitations in high-stakes decision-making. More recently, resear-
chers have voiced concern about big-data-driven ML models boosting or even generating socioeco-
nomic inequality. Intended or not, discrimination resulting from algorithmic business decisions can
ensue ethical or legal issues. To manage the inherent reputational risk and avoid claims for damages,
organizations need to ensure that their data-driven decision making remains fair.

In this article, we define fairness for ML purposes and exemplify how biased data causes ML models
to arrive at discriminatory predictions, and how bias mitigation algorithms can counter such effects.
To quantify bias in data, we have introduced various fairness metrics and selected two that suited
the definition of fairness applicable to our example. After an overview of bias mitigation algorithms,
we have expanded on reweighing, an algorithm run on the data before using the latter as ML input.

As a use case, we chose an AI-model that decides whether or not to invite job applicants for an in-
terview. To illustrate the case, we have provided a step-by-step demo including a Jupyter Notebook
script. The demo shows how the preprocessing reweighing algorithm reduces bias in training data
and thus in decisions based on that. To quantify the mitigation effect, we have compared the ML
model trained on an unbiased dataset with a benchmark based on the original data.

References
AI Fairness 360. IBM Research Trusted AI. URL: https://aif360.mybluemix.net/

Bellamy, Rachel ; Dey, Kuntal ; Hind, Michael ; Hoffman, Samuel ; Houde, Stephanie ; Kannan, Kalapriya ; Lohia, Pranay ; Martino,
Jacquelyn ; Mehta, Sameep ; Mojsilovic, Aleksandra ; Nagar, Seema ; Natesan Ramamurthy, Karthikeyan ; Richards, John ; Saha,
Diptikalyan ; Sattigeri, Prasanna ; Singh, Moninder ; Kush, Ramazon ; Zhang, Yunfeng. (2018). AI Fairness 360: An Extensible Toolkit
for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. URL: https://arxiv.org/pdf/1810.01943.pdf

d’Alessandro, B., O’Neil, C., & LaGatta, T. (2017). Conscientious Classification: A Data Scientist’s Guide to Discrimination-Aware
Classification. Big Data, 5(2), 120–134. https://arxiv.org/ftp/arxiv/papers/1907/1907.09013.pdf

Fairness Tree. [Graph]. URL: http://aequitas.dssg.io/static/images/metrictree.png

Fairness: Types of Bias | Machine Learning Crash Course. (2021). Google Developers.
URL: https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman and A. Galstyan, A survey on bias and fairness in machine learning, Sep. 2019,
URL: https://arxiv.org/pdf/1908.09635.pdf

Strategeion Resume Skills. (2019, January 9). Kaggle.
URL: https://www.kaggle.com/vingkan/strategeion-resume-skills

T. Calders, F. Kamiran and M. Pechenizkiy, Building Classifiers with Independency Constraints, 2009 IEEE International Conference
on Data Mining Workshops, 2009, pp. 13-18, doi: 10.1109/ICDMW.2009.83.
URL: https://www.win.tue.nl/~mpechen/publications/pubs/CaldersICDM09.pdf

T. Trusted-AI/AIF360. GitHub. URL: https://github.com/Trusted-AI/AIF360

Yadav, D. (2020, April 14). Weighted Logistic Regression for Imbalanced Dataset. Medium.
URL: https://towardsdatascience.com/weighted-logistic-regression-for-imbalanced-dataset-9a5cd88e68b

https://aif360.mybluemix.net/
https://arxiv.org/ftp/arxiv/papers/1907/1907.09013.pdf
http://aequitas.dssg.io/static/images/metrictree.png
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://arxiv.org/pdf/1908.09635.pdf
https://www.kaggle.com/vingkan/strategeion-resume-skills
https://www.win.tue.nl/~mpechen/publications/pubs/CaldersICDM09.pdf
https://github.com/Trusted-AI/AIF360
https://towardsdatascience.com/weighted-logistic-regression-for-imbalanced-dataset-9a5cd88e68b

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models 20

About Consileon
The Consileon Business Consultancy GmbH
is a midsized German IT and management
consultancy, located in the beautiful city of
Karlsruhe, Germany. We are mostly working
for clients in the DACH region (Germany, Aus-
tria, Switzerland) but are also internationally
represented with a total of 15 offices across
Europe. We assist our clients in many kinds
of digitization initiatives with a clear focus
on strategic decision making as well as trans-
lating strategies into operative action while
providing the needed IT support. What ma-
kes us unique is that not only do we elabo-
rate highly tailored concepts for the specific
challenge our client is facing but we are also
assisting the client with the implementation.

Publisher

Team Artificial Intelligence
Consileon Business Consultancy GmbH
www.consileon.ai

Contact
Consileon Business Consultancy GmbH
Maximilianstraße 5
76133 Karlsruhe
www.consileon.de

© 2021 Consileon Business Consultancy GmbH

Fairness in AI Systems – How to Detect and Mitigate Bias in Machine Learning Models

Ramiz Abusabbah
Consultant, member of AI-Team
ramiz.abusabbah@consileon.de

Dr. Andreas Alin
Head of AI-Team
andreas.alin@consileon.de

http://www.consileon.ai
https://www.consileon.de/
mailto:andreas.alin%40consileon.de?subject=

